Computer Access Technology /\
\7

Corporation .,

2403 Walsh Avenue, Santa Clara, CA 95051-1302 Tel: +1/408.727.6600 Fax: +1/408.727.6622

CATC Scripting Language 1.1
Reference Manual
for the
CATC BPT 1.0

Document Revision 1.0

July 3, 2002

CATC SCRIPTING LANGUAGE 1.1

Reference Manual

CATC Scripting Language 1.1 Reference
Manual for the CATC BPT 1.0, Document
Revision 1.0

Product Part Number: 730-0036-00

Document Disclaimer

The information contained in this document has been carefully checked and is
believed to be reliable. However, no responsibility can be assumed for inaccuracies
that may not have been detected.

CATC reserves the right to revise the information presented in this document
without notice or penalty.

Trademarks and Servicemarks
CATC and BPT are trademarks of Computer Access Technology Corporation.

Bluetooth is a trademark owned by Bluetooth SIG, Inc. and is used by Computer
Access Technology Corporation under license.

All other trademarks are property of their respective companies.

Copyright

Copyright 2002, Computer Access Technology Corporation (CATC). All rights
reserved.

This document may be printed and reproduced without additional permission, but
all copies should contain this copyright notice.

CATC SCRIPTING LANGUAGE 1.1
Reference Manual Table of Contents

TABLE OF CONTENTS

Tableof Contentscoiiiiiiiiiinnnnrennnnnes iii

1 Introductioncoiiiiiriiiinnreennneeennnnnons 1
Features of CATC Scripting Language 1
Newin CSL Version 1.1 i 1

2 Valuesiitiiiiiiiiiiitiiiitttittttitttnetatonnns 3
Literalso 3
Integerso 3
SIS .ot 3
Escape Sequences. 4

LSt o 4

Raw Bytes 4

Null 4
Variables 5
Global Variables i 5

Local Variables i 6
Constants 6

3 EXPressionscoviieieeeeeteeesssensnssssssassossnns 7
Sel BCT eXPIeSSION . ..ottt et 7

4 Operatorscceeeeeieeetttctcssssrttssssttacsonnns 9
OPETatioNS . . .ottt et et e 9
Operator Precedence and Associativityccoiiiriinenn.... 9

S5 Commentsovitiiiiieiiinnereennerennnssonnnses 17
6 Keywordscooiiiiiiiiiiiiiinnnerennneeennnnes 19
T Statementscoeiiiiiereneactoseastosnassonnnses 21
Expression Statementst e 21

if Statements 21
if-else Statements i 21
while Statements 22
for Statements 22
return Statements 23

il

CATC SCRIPTING LANGUAGE 1.1

Reference Manual Table of Contents
Compound Statementsttt 24

8 Preprocessingciiiiiiiiiiiiiitiiiiittieiaaes 27
O Functionsovuveiiiinerenenorosenssosonssonnnses 29
10 Primitivescctiiiittiiiiiiiennnerenenosonnnssons 31
Call() .o 31
Format() 31
Format Conversion Charactersccoiriniron... 32
GetNBItS() ..ot 33
NEXINBItS() .« oottt e e 34
ResoIve() ..o e 35
Trace() ..o vt 35

11 BPT Primitivescoiveiiiintiinnnerennnenannnnses 37
RunTest()ooi 37
CONNECH() .\ttt 37
Disconnect()vv vt 38
Inquiry() ..o 39
WaitForConnect()t 39
L2CAPEchoRequest()c.oiti e 40
MesSsageBOX() .. v it 41
SleeP() .« ot 41

iv

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 1
Reference Manual Introduction

CHAPTER 1: INTRODUCTION

CATC Scripting Language (CSL) is used to write test scripts for the CATC BPT™,
a Bluetooth™ production tester. The BPT uses test scripts to execute Bluetooth
commands on devices under test (DUTs). Several test scripts are included with the
BPT software installation. They can be used as-is or modified by a test engineer.
Additionally, brand new, customized scripts may be written. This allows test
engineers to add specialized tests to suit specific production needs.

The test scripts that CATC supplies for the BPT are distributed in the directory in
which the BPT application is installed. They are identifiable by the .script exten-
sion.

If you plan to modify any of the scripts that come with the BPT, it's a good idea to
make backups of the original scripts before making changes.

CSL is based on C language syntax, so anyone with a C programming background
will have no trouble learning CSL. The simple, yet powerful, structure of CSL also
enables less experienced users to easily acquire the basic knowledge needed to start
writing custom scripts.

Features of CATC Scripting Language

* Powerful — provides a high-level API while simultaneously allowing
implementation of complex algorithms.

* Easy to learn and use — has a simple but effective syntax.
* Self-contained — needs no external tools to run scripts.
* Wide range of value types — provides efficient and easy processing of data.

® General purpose — is integrated into a number of CATC products.

New in CSL Version 1.1

* Compound assignment operators added

* Increment and decrement operators added

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 1
Reference Manual Introduction

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 2
Reference Manual Values

CHAPTER 2: VALUES

There are five value types that may be manipulated by a script: integers, strings,
lists, raw bytes, and nul | . CSL is not a strongly typed language. Value types need
not be pre-declared. Literals, variables and constants can take on any of the five
value types, and the types can be reassigned dynamically.

Literals

Literals are data that remain unchanged when the program is compiled. Literals are
a way of expressing hard-coded data in a script.

Integers

Integer literals represent numeric values with no fractions or decimal points. Hexa-
decimal, octal, decimal, and binary notation are supported:

Hexadecimal numbers must be preceded by Ox: 0x2A, 0x54, OxFFFFFFO1
Octal numbers must begin with 0: 0775, 017, 0400
Decimal numbers are written as usual: 24, 1256, 2

Binary numbers are denoted with Ob: 0b01101100, 0b01, 0b100000

Strings

String literals are used to represent text. A string consists of zero or more characters
and can include numbers, letters, spaces, and punctuation. An empty string (" ")
contains no characters and evaluates to false in an expression, whereas a non-empty
string evaluates to true. Double quotes surround a string, and some standard
backslash (\) escape sequences are supported.

String Represented text

"Quote: \"This is a string Quote: "This is a string

literal . \"" literal."

256" 256 **Note that this does not represent the integer

256, but only the characters that make up the number.

"abcd! $9&*" abcd! $9&*
"June 26, 2001" June 26, 2001
"T 1, 2, 31" [1, 2, 3]

Table 2.1: Examples of String Literals

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 2
Reference Manual Values

Escape Sequences
These are the available escape sequences in CSL:

Escape
Character Sequence Example Output
backslash \\ "This is a backslash: \\" This is a backslash: \
double quote \ " "\"Quotes!\"" "Quotes!"
horizontal tab \t "Before tab\tAfter tab" Before tab After tab
newline \n "This is howwnto get a newine." Thisishow

to get a newline.

single quote \! "\'Single quote\"'" 'Single quote’'

Table 2.2: Escape Sequences

Lists

A list can hold zero or more pieces of data. A list that contains zero pieces of data
is called an empty list. An empty list evaluates to false when used in an expression,
whereas a non-empty list evaluates to true. List literals are expressed using the
square bracket ([]) delimiters. List elements can be of any type, including lists.

[1, 2, 3, 4]

[]
["one", 2, "three", [4, [5, [6]]]]

Raw Bytes

Raw binary values are used primarily for efficient access to packet payloads. A
literal notation is supported using single quotes:

' 001122334455667 78899 AABBCCDDEEFF

This represents an array of 16 bytes with values starting at 00 and ranging up to
OXxFF. The values can only be hexadecimal digits. Each digit represents a nybble
(four bits), and if there are not an even number of nybbles specified, an implicit zero
is added to the first byte. For example:

" FFF
is interpreted as

' OFFF'

Null

Nul | indicates an absence of valid data. The keyword nul | represents a literal
null value and evaluates to false when used in expressions.

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 2
Reference Manual Values

result = null;

Variables

Variables are used to store information, or data, that can be modified. A variable can
be thought of as a container that holds a value.

All variables have names. Variable names must contain only alphanumeric charac-
ters and the underscore (_) character, and they cannot begin with a number. Some
possible variable names are

X
_Newval ue
name_2

A variable is created when it is assigned a value. Variables can be of any value type,
and can change type with re-assignment. Values are assigned using the assignment
operator (=). The name of the variable goes on the left side of the operator, and the
value goes on the right:

x =11, 2, 3]
New val ue = x
name2 = "Smth"

If a variable is referenced before it is assigned a value, it evaluates to null.

There are two types of variables: global and local.

Global Variables

Global variables are defined outside of the scope of functions. Defining global
variables requires the use of the keyword set . Global variables are visible through-
out a file (and all files that it includes).

set d obal = 10;

If an assignment in a function has a global as a left-hand value, a variable will not
be created, but the global variable will be changed. For example

set dobal = 10;

Function()

{

d obal = "cat";
Local = 20;

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 2
Reference Manual Values

will create a local variable called Local , which will only be visible within the
function Funct i on. Additionally, it will change the value of G obal to" cat ",
which will be visible to all functions. This will also change its value type from an
integer to a string.

Local Variables

Local variables are not declared. Instead, they are created as needed. Local
variables are created either by being in a function's parameter list, or simply by
being assigned a value in a function body.

Funct i on(Par anet er)

{
}

This function will create a local variable Par anet er and a local variable Local ,
which has an assigned value of 20.

Local = 20;

Constants

A constant is similar to a variable, except that its value cannot be changed. Like
variables, constant names must contain only alphanumeric characters and the un-
derscore (_) character, and they cannot begin with a number.

Constants are declared similarly to global variables using the keyword const :

const CONSTANT = 20;

They can be assigned to any value type, but will generate an error if used in the left-
hand side of an assignment statement later on. For instance,

const constant_2 = 3;

Function()

{
}

will generate an error.

constant _2 = 5;

Declaring a constant with the same name as a global, or a global with the same name
as a constant, will also generate an error. Like globals, constants can only be
declared in the file scope.

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 3
Reference Manual Expressions

CHAPTER 3: EXPRESSIONS

An expression is a statement that calculates a value. The simplest type of expression
is assignment:

X =2
The expression X = 2 calculates 2 as the value of x.

All expressions contain operators, which are described in Chapter 4, Operators, on
page 9. The operators indicate how an expression should be evaluated in order to
arrive at its value. For example

X + 2
says to add 2 to x to find the value of the expression. Another example is
X > 2

which indicates that x is greater than 2. This is a Boolean expression, so it will
evaluate to either true or false. Therefore, if X = 3,then x > 2 will evaluate to
true; if X = 1, it will return false.

True is denoted by a non-zero integer (any integer except 0), and false is a zero
integer (0). True and false are also supported for lists (an empty list is false, while
all others are true), and strings (an empty string is false, while all others are true),
and nul | is considered false. However, all Boolean operators will result in integer
values.

sel ect expression

The sel ect expression selects the value to which it evaluates based on Boolean
expressions. This is the format for a sel ect expression:

sel ect {
<expressionl> : <statenentl>
<expression2> : <statenent2>

¥

The expressions are evaluated in order, and the statement that is associated with the
first true expression is executed. That value is what the entire expression evaluates
to.

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 3

Reference Manual Expressions
x =10
Val ue_of _x = select {
X <5 : "Less than 5";
x >= 5 : "Greater than or equal to 5";
1

The above expression will evaluate to “Greater than or equal to 5” because the first
true expression is X >= 5. Note that a semicolon is required at the end of a

sel ect expression because it is not a compound statement and can be used in an
expression context.

There is also a keyword def aul t, which in effect always evaluates to true. An
example of its use is

Astring = select {
A==1: "one";
A==2: "tw",
A == 3. "three";

A>3 : "overfl ow
default : null

¥

If none of the first four expressions evaluates to true, then def aul t will be eval-
uated, returning a value of nul | for the entire expression.

sel ect expressions can also be used to conditionally execute statements, similar
to C swi t ch statements:

sel ect {
== 1 : DoSonet hi ng();
== 2 : DoSonet hi ngEl se();
defaul t: DoNot hi ng();
1

In this case the appropriate function is called depending on the value of A, but the
evaluated result of the sel ect expression is ignored.

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 4
Reference Manual Operators

CHAPTER 4: OPERATORS

An operator is a symbol that represents an action, such as addition or subtraction,
that can be performed on data. Operators are used to manipulate data. The data
being manipulated are called operands. Literals, function calls, constants, and
variables can all serve as operands. For example, in the operation

X + 2

the variable x and the integer 2 are both operands, and + is the operator.

Operations

Operations can be performed on any combination of value types, but will result in
a null value if the operation is not defined. Defined operations are listed in the
Operand Types column of Table 4.2 on page 12. Any binary operation on a null and
a non-null value will result in the non-null value. For example, if

X = null
then
3* X

will return a value of 3.

A binary operation is an operation that contains an operand on each side of the
operator, as in the preceding examples. An operation with only one operand is
called a unary operation, and requires the use of a unary operator. An example of a
unary operation is

'
which uses the logical negation operator. It returns a value of 0.

The unary operators are si zeof (), head(),tail (),~and!.

Operator Precedence and Associativity

Operator rules of precedence and associativity determine in what order operands are
evaluated in expressions. Expressions with operators of higher precedence are
evaluated first. In the expression

4 +9 * 5

the * operator has the highest precedence, so the multiplication is performed before
the addition. Therefore, the expression evaluates to 49.

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 4
Reference Manual Operators

The associative operator () is used to group parts of the expression, forcing those
parts to be evaluated first. In this way, the rules of precedence can be overridden.
For example,

(4+9) *5

causes the addition to be performed before the multiplication, resulting in a value
of 65.

When operators of equal precedence occur in an expression, the operands are
evaluated according to the associativity of the operators. This means that if an op-
erator's associativity is left to right, then the operations will be done starting from
the left side of the expression. So, the expression

4+9-6+5

would evaluate to 12. However, if the associative operator is used to group a part or
parts of the expression, those parts are evaluated first. Therefore,

(4+9)-(6+5)
has a value of 2.

In Table 4.1, Operator Precedence and Associativity, the operators are listed in
order of precedence, from highest to lowest. Operators on the same line have equal
precedence, and their associativity is shown in the second column.

Operator Symbol Associativity

++ -- Right to left

[] @) Left to right

~ ! si zeof head tail Right to left
* / % Left to right

+ - Left to right

<< >> Left to right

< > <= >= Left to right

I = Left to right
& Left to right
A Left to right
[Left to right
&& Left to right

[] Left to right

Table 4.1: Operator Precedence and Associativity

10

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 4
Reference Manual Operators
Operator Symbol Associativity
= += -= * = / = o= >>= <<= &= Right to left

Table 4.1: Operator Precedence and Associativity (Continued)

11

CATC SCRIPTING LANGUAGE 1.1

CHAPTER 4

Reference Manual

Operators

Index Operator

[] Index or Raw Bytes Integer Raw = ' 001122’
subscript Rawf 1] = 0x11
List Any List = [0, 1, 2, 3, [4, 5]]
List[2] = 2
List[4] = [4, 5]
List[4][1] =5
*Note: if an indexed Raw value is assigned to any
value that is not a byte (> 255 or not an integer), the
variable will be promoted to a list before the
assignment is performed.
Associative Operator
() Associative Any Any (2+4) * 3 =18
2+ (4*3) =14
Arithmetic Operators
* Multiplication Integer-integer Integer 3*1=3
/ Division Integer-integer Integer 3/ 1=3
% Modulus Integer-integer Integer 3%1=0
+ Addition Integer-integer Integer 2+2=4
String-string String "one " + "two" = "one two"
Raw byte-raw byte | Raw ' 001122 + ' 334455 =
' 001122334455’
List-list List [1, 2] +[3, 4 =11, 2, 3, 4]
Integer-list List 1+[2 3 =11, 2, 3]
Integer-string String "nunber =" + 2 = "nunber = 2"
*Note: integer-string concatenation uses decimal
conversion.
String-list List "one" + ["two"] = ["one", "two"]
- Subtraction Integer-integer Integer 3-1=2
Increment and Decrement Operators
++ Increment Integer Integer a=1
++a = 2
b=1
b++=1
*Note that the value of b after execution is 2.
-- Decrement Integer Integer a =2
--a =1
b =2
b-- =2

*Note that the value of b after execution is 1.

Table 4.2: Operators

12

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 4

Reference Manual Operators

Equality Operators
== Equal Integer-integer Integer 2 ==
String-string Integer | "three" == "three"
Raw byte-raw byte | Integer '001122' == '001122'
List-list Integer [1, [2, 3]] ==1[1, [2, 3]]
*Note: equality operations on values of different
types will evaluate to false.
I= Not equal Integer-integer Integer 21=3
String-string Integer | "three" != "four"
Raw byte-raw byte | Integer '001122" ! = ' 334455
List-list Integer [1, [2, 3]] '=1[1, [2, 4]]

*Note: equality operations on values of different
types will evaluate to false.

Relational Operators

< Less than Integer-integer Integer 1 <2
String-string Integer | "abc" < "def"
> Greater than Integer-integer Integer 2>1
String-string Integer | "xyz" > "abc"
<= Less than or Integer-integer Integer 23 <= 27
equal String-string Integer | "cat" <= "dog"
>= Greater than or | Integer-integer Integer 2>=1
equal String-string Integer "sun" >= "npoon"

*Note: relational operations on string values are
evaluated according to character order in the ASCII

table.
Logical Operators

! Negation All combinations Integer 10 =1 I"cat" =0

of types 19 =0 =1
&& Logical AND All combinations Integer 1&1=1 18&&!"" =1

of types 18 0 =0 1&& "cat" =1
| Logical OR All combinations Integer 1]] 1=1 0]] 0=0

of types 1] 0=1 ""]| !"cat" =0

Table 4.2: Operators (Continued)

13

CATC SCRIPTING LANGUAGE 1.1

CHAPTER 4

Reference Manual

Operators

Bitwise Logical Operators
~ Bitwise Integer-integer Integer ~0b11111110 = 0b00000001
complement
& Bitwise AND Integer-integer Integer 0b11111110 & 0b01010101 =
0b01010100
n Bitwise Integer-integer Integer 0b11111110 ~ 0b01010101 =
exclusive OR 0b10101011
| Bitwise Integer-integer Integer | Ob11111110 | 0b01010101 =
inclusive OR 0b11111111
Shift Operators
<< Left shift Integer-integer Integer 0b11111110 << 3 = 0b11110000
>> Right shift Integer-integer Integer | Ob11111110 >> 1 = 0b01111111
Assignment Operators
= Assignment Any Any A=1
B=C=A
+= Addition Integer-integer Integer x =1
assignment X +=1 =2
String-string String a = "one "
a += "tw" = "one two"
Raw byte-raw byte | Raw z = '001122'
z += '334455' = '001122334455'
List-list List x =11, 2]
x +=[3, 4 =11, 2, 3, 4]
Integer-list List y =1
y +=[2, 3] =[1, 2, 3]
Integer-string String a = "nunber ="
a += 2 = "nunber = 2"
*Note: integer-string concatenation uses decimal
conversion.
String-list List s = "one"
s + ["two"] = ["one", "two"]
-= Subtraction Integer-integer Integer y =3
assignment y —=1=2
*= Multiplication Integer-integer Integer x =3
assignment X *=1 =3
/= Division Integer-integer Integer =3
assignment s/=1=3
% Modulus Integer-integer Integer y =3
assignment y % 1=0
>>= Right shift Integer-integer Integer b = 0b11111110
assignment b >>= 1 = 0b01111111
<<= Left shift Integer-integer Integer a = 0b11111110
assignment a <<= 3 = 0b11111110000

Table 4.2: Operators (Continued)

14

CATC SCRIPTING LANGUAGE 1.1

CHAPTER 4

Reference Manual

Operators

Assignment Operators (continued)
&= Bitwise AND Integer-integer Integer a = 0b11111110
assignment a &= 0b01010101 = 0b01010100
N= Bitwise Integer-integer Integer e = 0b11111110
exclusive OR e = 0b01010101 = 0b10101011
assignment
= Bitwise Integer-integer Integer i = 0bll111110
inclusive OR i |= 0b01010101 = 0b11111111
assignment
List Operators
si zeof () | Number of Any Integer sizeof ([1, 2, 3]) =3
elements si zeof (' 0011223344') =5
sizeof ("string") =6
sizeof (12) =1
sizeof ([1, [2, 3]]) =2
*Note: the last example demonstrates that the
si zeof () operator returns the shallow count of a
complex list.
head() Head List Any head([1, 2, 3]) =1
*Note: the Head of a list is the first item in the list.
tail () Tail List List tail([1, 2, 3]) =112, 3]
*Note: the Tail of a list includes everything except
the Head.

Table 4.2: Operators (Continued)

15

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 4
Reference Manual Operators

16

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 5
Reference Manual Comments

CHAPTER 5: COMMENTS

Comments may be inserted into scripts as a way of documenting what the script
does and how it does it. Comments are useful as a way to help others understand
how a particular script works. Additionally, comments can be used as an aid in
structuring the program.

Comments in CSL begin with a hash mark (#) and finish at the end of the line. The
end of the line is indicated by pressing the Return or Enter key. Anything contained
inside the comment delimiters is ignored by the compiler. Thus,

x = 2;

is not considered part of the program. CSL supports only end-of-line comments,
which means that comments can be used only at the end of a line or on their own
line. It's not possible to place a comment in the middle of a line.

Writing a multi-line comment requires surrounding each line with the comment de-
limiters

otherwi se the conpiler would try to interpret
anything outside of the delimters
as part of the code.

The most common use of comments is to explain the purpose of the code immedi-
ately following the comment. For example:

Add a profile if we got a server channel
if(rfChannel '= "Failure")

{

result = SDPAddProfil eServi ceRecord(rf Channel,
" (bj ect Push");

Trace(" SDPAddProfi |l eServi ceRecord returned ",
result, "\n");

}

17

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 5
Reference Manual Comments

18

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 6
Reference Manual Keywords

CHAPTER 6: KEYWORDS

Keywords are reserved words that have special meanings within the language. They
cannot be used as names for variables, constants or functions.

In addition to the operators, the following are keywords in CSL:

Keyword Usage
sel ect sel ect expression
set define a global variable
const define a constant
return r et ur n statement
whil e whi | e statement
for f or statement
i f i f statement
el se i f-el se statement
def aul t sel ect expression
nul | null value
in input context
out output context

Table 6.1: Keywords

19

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 6
Reference Manual Keywords

20

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 7
Reference Manual Statements

CHAPTER 7: STATEMENTS

Statements are the building blocks of a program. A program is made up of list of
statements.

Seven kinds of statements are used in CSL: expression statements, if statements, if-
else statements, while statements, for statements, return statements, and compound
statements.

Expression Statements

An expression statement describes a value, variable, or function.
<expr essi on>
Here are some examples of the different kinds of expression statements:

Val ue: x + 3;
Variable: x = 3;
Function: Trace (X + 3);

The variable expression statement is also called an assignment statement, because
it assigns a value to a variable.

| f Statements

Ani f statement follows the form

i f <expression> <statenent>
For example,

if (3 & 3) Trace("True!");

will cause the program to evaluate whether the expression 3 && 3 is nonzero, or
True. It is, so the expression evaluates to True and the Tr ace statement will be
executed. On the other hand, the expression 3 && O is not nonzero, so it would
evaluate to False, and the statement wouldn't be executed.

| f-el se Statements

The form for ani f - el se statement is

i f <expression> <statenentl>
el se <st at enent 2>

The following code

21

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 7
Reference Manual Statements

if (3-3]||] 2- 2) Trace ("Yes");
el se Trace ("No");

will cause “No” to be printed, because 3 - 3 || 2 - 2 will evaluate to False
(neither 3 - 3 nor2 - 2 isnonzero).

whi | e Statements

A wWhi | e statement is written as

whi | e <expressi on> <st at enent >
An example of this is

X = 2

while (x < 5)

{
)

Trace (X,
X =X + 1;
}

The result of this would be
2, 3, 4,

f or Statements

A f or statement takes the form

for (<expressionl>, <expression2>;, <expression3>)
<st at enent >

The first expression initializes, or sets, the starting value for x. It is executed one
time, before the loop begins. The second expression is a conditional expression. It
determines whether the loop will continue -- if it evaluates true, the function keeps
executing and proceeds to the statement; if it evaluates false, the loop ends. The
third expression is executed after every iteration of the statement.

—————————™ False ———» End

exprassionT | —m | expression? | ———m True ———W | statement
! v

expression

Figure 7-1: Execution of af OI statement

22

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 7
Reference Manual Statements

The example
for (x =2;, x <5, x=x+1) Trace (x, "\n");
would output

2
3
4

The example above works out like this: the expression X = 2 is executed. The
value of x is passed to X < 5, resultingin 2 < 5. This evaluates to true, so the
statement Tr ace (x, "\n") is performed, causing 2 and a new line to print.
Next, the third expression is executed, and the value of x is increased to 3. Now,

X < 5 isexecuted again, and is again true, so the Tr ace statement is executed,
causing 3 and a new line to print. The third expression increases the value of x to 4;
4 < 5istrue, so 4 and a new line are printed by the Tr ace statement. Next, the
value of x increases to 5. 5 < 5 is not true, so the loop ends.

r et ur n Statements

Every function returns a value, which is usually designated inar et ur n statement.
A'r et ur n statement returns the value of an expression to the calling environment.
It uses the following form:

return <expression>,;
An example of a r et ur n statement and its calling environment is
Trace (Hi There());
H There()
{

}

The call to the primitive function Tr ace causes the function Hi Ther e() to be
executed. Hi Ther e() returns the string “Hi there” as its value. This value is
passed to the calling environment (Tr ace), resulting in this output:

H there

return "H there";

A1 et ur n statement also causes a function to stop executing. Any statements that
come after the r et ur n statement are ignored, because r et ur n transfers control
of the program back to the calling environment. As a result,

23

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 7
Reference Manual Statements

Trace (Hi There());

H There()

{
a="H there";
return a;
b = "Goodbye";
return b;

}

will output only
H there

because when r et ur n a; is encountered, execution of the function terminates,
and the second return statement (r et ur n b;) is never processed. However,

Trace (Hi There());

Hifhere()

{
a="H there";
b = "Goodbye";

if (31!=3) return a;
el se return b;

}

will output
Goodbye

because thei f statement evaluates to false. This causes the firstr et ur n statement
to be skipped. The function continues executing with the el se statement, thereby
returning the value of b to be used as an argument to Tr ace.

Compound Statements

A compound statement, or statement block, is a group of one or more statements

that is treated as a single statement. A compound statement is always enclosed in
curly braces ({}). Each statement within the curly braces is followed by a semi-
colon; however, a semicolon is not used following the closing curly brace.

The syntax for a compound statement is

{

<first_statenent>;
<second_st at enent >;

24

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 7
Reference Manual Statements

<l ast _st at enent >;

}
An example of a compound statement is
{
X = 2;
X + 3;
}
It's also possible to nest compound statements, like so:
{
X = 2;
{
y =3,
}
X + 3;
}

Compound statements can be used anywhere that any other kind of statement can
be used.

if (3 &% 3)
{

result = "True!l";
Trace(result);

}

Compound statements are required for function declarations and are commonly
usedini f,i f-el se,whil e, andf or statements.

25

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 7
Reference Manual Statements

26

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 8
Reference Manual Preprocessing

CHAPTER 8: PREPROCESSING

The preprocessing command % ncl ude can be used to insert the contents of a file
into a script. It has the effect of copying and pasting the file into the code. Using
% ncl ude allows the user to create modular script files that can then be incorpo-
rated into a script. This way, commands can easily be located and reused.

The syntax for % ncl ude is this:
% ncl ude “includefile.inc”

The quotation marks around the filename are required, and by convention, the
included file has a . i nc extension.

The filenames given in the include directive are always treated as being relative to
the current file being parsed. So, if a file is referenced via the preprocessing
command in a .dec file, and no path information is provided (% ncl ude
“file.inc”),theapplication will try to load the file from the current directory.
Files that are in a directory one level up from the current file can be referenced using
“..\file.inc”,and likewise, files one level down can be referenced using the
relative pathname (“ di rect ory\fi | e. i nc”). Lastbutnot least, files can also
be referred to using a full pathname, such as

“C:\global _scripts\include\file.inc”

27

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 8
Reference Manual Preprocessing

28

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 9
Reference Manual Functions

CHAPTER 9: FUNCTIONS

A function is a named statement or a group of statements that are executed as one
unit. All functions have names. Function names must contain only alphanumeric
characters and the underscore (_) character, and they cannot begin with a number.

A function can have zero or more parameters, which are values that are passed to
the function statement(s). Parameters are also known as arguments. Value types are
not specified for the arguments or return values. Named arguments are local to the
function body, and functions can be called recursively.

The syntax for a function declaration is

name(<paraneter 1> <paraneter2>, ...)

{
}

The syntax to call a function is

<st at enent s>

name(<paraneter 1> <paraneter2>, ...)

So, for example, a function named add can be declared like this:

add(x, vy)
{

}

and called this way:
add(5, 6);

return x + vy;

This would result in a return value of 11.

Every function returns a value. The return value is usually specified using a
r et ur n statement, but if no r et ur n statement is specified, the return value will
be the value of the last statement executed.

Arguments are not checked for appropriate value types or number of arguments
when a function is called. If a function is called with fewer arguments than were
defined, the specified arguments are assigned, and the remaining arguments are
assigned to null. If a function is called with more arguments than were defined, the
extra arguments are ignored. For example, if the function add is called with just one
argument

add(1);

29

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 9
Reference Manual Functions

the parameter X will be assigned to 1, and the parameter y will be assigned to null,
resulting in a return value of 1. But if add is called with more than two arguments

add(1, 2, 3);
X will be assigned to 1,y to 2, and 3 will be ignored, resulting in a return value of 3.

All parameters are passed by value, not by reference, and can be changed in the
function body without affecting the values that were passed in. For instance, the
function

add_1(x, vy)
{
X = 2,
y =3
return x + vy;
}
reassigns parameter values within the statements. So,
a = 10;
b = 20;
add _1(a, b);

will have a return value of 5, but the values of a and b won't be changed.

The scope of a function is the file in which it is defined (as well as included files),
with the exception of primitive functions, whose scopes are global.

Calls to undefined functions are legal, but will always evaluate to null and result in
a compiler warning.

30

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 10
Reference Manual Primitives

CHAPTER 10: PRIMITIVES

Primitive functions are called similarly to regular functions, but they are imple-
mented outside of the language. Some primitives support multiple types for certain
arguments, but in general, if an argument of the wrong type is supplied, the function
will return null.

Cal | ()

Call (<function_nane string> <arg_list list>)

Parameter Meaning Default Value Comments

function_name string

arg_list list Used as the list of parameters in the function call.

Return value
Same as that of the function that is called.

Comments

Calls a function whose name matches the f unct i on_namne parameter. All scope
rules apply normally. Spaces in the f unct i on_nane parameter are interpreted as
the ‘_’ (underscore) character since function names cannot contain spaces.

Example
Call ("Format", ["the nunber is %", 10]);

is equivalent to:

Format ("t he nunber is %", 10);

For mat ()

Format (<format string> <value string or integer>)

Parameter Meaning Default Value Comments

format string

value string or integer

Return value
None.

31

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 10
Reference Manual Primitives

Comments

For mat is used to control the way that arguments will print out. The format string
may contain conversion specifications that affect the way in which the arguments
in the value string are returned. Format conversion characters, flag characters, and
field width modifiers are used to define the conversion specifications.

Example
For mat (" Ox%®©2X", 20);

would yield the string 0x14.
For mat can only handle one value at a time, so
Format ("% %", 20, 30);
would not work properly. Furthermore, types that do not match what is specified in

the format string will yield unpredictable results.

Format Conversion Characters

These are the format conversion characters used in CSL:

Code Type Output
c Integer Character
d Integer Signed decimal integer.
i Integer Signed decimal integer
0 Integer Unsigned octal integer
u Integer Unsigned decimal integer
b'¢ Integer Unsigned hexadecimal integer, using "abcdef."
X Integer Unsigned hexadecimal integer, using "ABCDEFE."
s String String

Table 10.1: Format Conversion Characters

A conversion specification begins with a percent sign (%) and ends with a conver-
sion character. The following optional items can be included, in order, between the
% and the conversion character to further control argument formatting:

® Flag characters are used to further specify the formatting. There are five flag characters:

* A minus sign (-) will cause an argument to be left-aligned in its field. Without the
minus sign, the default position of the argument is right-aligned.

+ Aplussign will insert a plus sign (+) before a positive signed integer. This only works
with the conversion characters d and | .

32

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 10
Reference Manual Primitives

» A space will insert a space before a positive signed integer. This only works with the
conversion characters d and i . If both a space and a plus sign are used, the space flag
will be ignored.

« A hash mark (#) will prepend a O to an octal number when used with the conversion
character O. If # is used with X or X it will prepend OX or OX to a hexadecimal
number.

« A zero (0) will pad the field with zeros instead of with spaces.

¢ Field width specification is a positive integer that defines the field width, in spaces, of the
converted argument. If the number of characters in the argument is smaller than the field
width, then the field is padded with spaces. If the argument has more characters than the
field width has spaces, then the field will expand to accommodate the argument.

Get NBi t s()

GetNBits (<bit_source list or raw>, <bit_offset
i nteger>, <bit_count integer>)

Parameter Meaning Default Value Comments
bit_source list, raw, or Can be an integer value (4 bytes) or a list of inte-
integer gers that are interpreted as bytes.
bit_offset integer Index of bit to
start reading
from
bit_count integer Number of

bits to read

Return value
None.

Comments

Reads bi t _count bits from bi t _sour ce starting at bi t _of f set . Will
return null if bi t _of f set +bi t _count exceeds the number of bits in
bit_source.Ifbit_count is 32 or less, the result will be returned as an
integer. Otherwise, the result will be returned in a list format that is the same as the
input format. Get NBi t S also sets up the bit data source and global bit offset used
by Next NBi t s and PeekNBi t s. Note that bits are indexed starting at bit 0.

Example
raw = ' FOFO' ; # 1111000011110000 bi nary
result = GetNBits (raw, 2, 4);
Trace ("result =", result);

The output would be

33

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 10
Reference Manual Primitives

result = C # The result is given in
hexadeci mal . The result in binary is 1100.

Inthe callto Get NBi t s: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

Next NBi t s()

Next NBits (<bit_count integer>)

Parameter Meaning Default Value Comments

bit_count integer

Return value
None.

Comments

Reads bi t _count bits from the data source specified in the last call to

Get NBi t s, starting after the last bit that the previous call to Get NBi t S or
Next NBi t s returned. If called without a previous call to Get NBi t s, the result is
undefined. Note that bits are indexed starting at bit 0.

Example

raw = ' FOFO' ; # 1111000011110000 bi nary
resultl GetNBits (raw, 2, 4);
result?2 Next NBi t s(5);

result3 Next NBi t s(2);

Trace ("resultl =", resultl, " result2 =", result2,
result3 =", result3);

This will generate this trace output:
resultl = Cresult2 =7 result3 = 2

Inthe call to Get NBi t s: starting at bit 2, reads 4 bits (1100), and returns the value
0xC.

In the first call to Next NBi t s: starting at bit 6, reads 5 bits (00111), and returns
the value 0x7.

In the second call to Next NBi t s: starting at bit 11 (=6 + 5), reads 2 bits (10),
and returns the value 0x2.

34

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 10
Reference Manual Primitives

Resol ve()

Resol ve(<synbol _nane string>)

Parameter Meaning Default Value Comments

symbol_name string

Return value
The value of the symbol. Returns null if the symbol is not found.

Comments

Attempts to resolve the value of a symbol. Can resolve global, constant and local
symbols. Spaces in the synbol _nane parameter are interpreted as the ‘_’ (un-
derscore) character since symbol names cannot contain spaces.

Example
a = Resol ve("synbol");

is equivalent to:

a = synbol;
Trace()
Trace(<argl any>, <arg2 any>, ...)
Parameter Meaning Default Value Comments
arg any The number of arguments is variable.

Return value
None.

Comments
The values given to this function are given to the debug console.

Example
list = ["cat", "dog", "cow'];
Trace("List =", list, "\n");

would result in the output

List = [cat, dog, cow

35

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 10
Reference Manual Primitives

36

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 11
Reference Manual BPT Primitives

CHAPTER 11: BPT PRIMITIVES

RunTest ()

RunTest (Address)

Parameter Meaning Default Value Comments
Address Bluetooth
address of
device to run
test on

Return value
e “Success”

* Error message

Comments

This is the entry point into a script. When a script is run, the script's RunTest ()
function will be called. Include this command at the beginning of every script.

Example

RunTest (Address)
{

}
Connect ()

Connect (Address)

include body of script here

Parameter Meaning Default Value Comments
Address Bluetooth
address of
device to con-
nect with

Return value

* “Success”

* “Failure”

» “Disconnection in progress”
* “Already connected”

37

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 11
Reference Manual BPT Primitives

Comments

Establishes an ACL connection with the specified device.

Example
result = Connect(Address);
if(result !'= "Success")
{

MessageBox("Failed to connect!");

}

Di sconnect ()

Di sconnect (Address)

Parameter Meaning Default Value Comments
Address Bluetooth
address of

device to dis-
connect from

Return value
e “Success”
e “Failure”

» “Disconnection in progress”

Comments

Closes the ACL connection with the specified device.

Example
result = D sconnect(Address);
if(result !'= "Success")
{

MessageBox("Failed to disconnect!");

}

38

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 11
Reference Manual BPT Primitives

| nqui ry()

I nquiry(1AC, Timeout)

Parameter Meaning Default Value Comments
IAC Inquiry GIAC “GIAC”, or a 32-bit integer value
Access Code
Timeout Timeout in
units of 1.2
seconds

Return value

» Array of Bluetooth addresses that were found during the inquiry.
+ “Failure”

* “Inquiry in progress”

Comments

Calling I nqui ry() will block for the duration specified by Ti meout . The
function returns an array of devices that were found during the inquiry. These can
be addressed individually. The current version of BPT hardware only supports
GIAC inquiries.

Example

Use default paraneters
Devices = Inquiry();

Trace("First device was: ", Devices[0]);

Wai t For Connect ()
Wi t For Connect (Address, Ti meout Vs)

Parameter Meaning Default Value Comments

Address Bluetooth
address of
device to wait
for connec-
tion with

TimeoutMS Timeout in 10000
milliseconds (10 seconds)

Return value
e “Success”

39

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 11
Reference Manual BPT Primitives

e “Failure”

* “Already connected”

Comments

Waits for an incoming ACL connection from a specified device for a specified time.

Example
result = WaitForConnect(Address);

L2CAPEchoRequest ()

L2CAPEchoRequest (Address, EchoData)

Parameter Meaning Default Value Comments

Address Bluetooth
address of
device to
request echo
data from

EchoData Test data String should not exceed 44 characters
string

Return value

* “Success”, EchoData
e “Failure”

* “Not connected”

* “Invalid parameter”

Comments

Sends an Echo Request to the L2CAP protocol on the specified remote device.

Example

Result = L2CAPEchoRequest (Address, "Maxi num
bogosity");

if(Result[0] == "Success")

{
}

MessageBox(Result[1], "Echo request result");

40

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 11
Reference Manual BPT Primitives

MessageBox()

MessageBox(Message, Caption)

Parameter Meaning Default Value Comments
Message Text to display
in the mes-
sage box
Caption Caption of the ~“Script Mes-
message box sage”

Return value

None.

Comments

Bring up a simple message box function with one “OK” button. This is a good way
to pause execution of the script or indicate errors.

Example

MessageBox("Failed to connect”,
"Connection Failure");

Sl eep()

Sl eep(Tinmel nMs)

Parameter Meaning Default Value Comments
TimeInMS Time in milli-
seconds

Return value

None.

Comments

Delays program execution for a specified number of milliseconds.

Example
Sl eep(1000); # Sleep for one second

41

CATC SCRIPTING LANGUAGE 1.1 CHAPTER 11
Reference Manual BPT Primitives

9

	Table of Contents
	Chapter 1: Introduction
	Features of CATC Scripting Language
	New in CSL Version 1.1

	Chapter 2: Values
	Literals
	Integers
	Strings
	Escape Sequences

	Lists
	Raw Bytes
	Null

	Variables
	Global Variables
	Local Variables

	Constants

	Chapter 3: Expressions
	select expression

	Chapter 4: Operators
	Operations
	Operator Precedence and Associativity

	Chapter 5: Comments
	Chapter 6: Keywords
	Chapter 7: Statements
	Expression Statements
	if Statements
	if-else Statements
	while Statements
	for Statements
	return Statements
	Compound Statements

	Chapter 8: Preprocessing
	Chapter 9: Functions
	Chapter 10: Primitives
	Call()
	Format()
	Format Conversion Characters

	GetNBits()
	NextNBits()
	Resolve()
	Trace()

	Chapter 11: BPT Primitives
	RunTest()
	Connect()
	Disconnect()
	Inquiry()
	WaitForConnect()
	L2CAPEchoRequest()
	MessageBox()
	Sleep()

